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1 Introduction 

1.1 Scope of the Document 
The ESA Science for Society High-Resolution AlbedoMap (known hereafter as HR-
Albedo) project aims to develop a surface albedo generation system that can produce high 
temporal and high resolution spatial surface spectral and broadband albedo products, which 
offer great potential for mapping land surface energy budgets especially over agricultural 
and forest areas. In addition, this high-resolution albedo product can improve the 
performance of global climate models by providing better constraints on surface albedo 
parameterisation. 
This Algorithm Theoretical Basis Document (ATBD) introduces the following 5 modules 
inside this high-resolution albedo generation framework, which include the 1) machine 
learning based cloud detection module; 2) Sensor invariant Atmospheric Correction (SIAC) 
module; 3) Endmember-based Sentinel-2 pure pixel extraction module; 4) high-resolution 
albedo retrieval module; and 5) albedo gap filling module. 

1.2 Acronyms 

The definition of the acronyms used in this document is provided hereafter: 

 
ATBD  Algorithm Theoretical Basis Document 
AOT  Aerosol Optical Thickness 
ATGP  Automatic Target Generation Process 
BHR  Bi-Hemispherical diffuse Reflectance 
BoA  Bottom-of-Atmosphere 
BRDF  Bidirectional Reflectance Distribution Function 
BRF  Bidirectional Reflectance Factor 
BSA  Black Sky Albedo 
CAMS  Copernicus Atmospheric Monitoring Service 
DHR  Directional Hemispherical Reflectance 
FCLS  Fully Constrained Least Squares 
RTLSR RossThick-LiSparse-Reciprocal 
SIAC  Sensor invariant Atmospheric Correction 
PDF  Probability Density Function 
PSF  Point Spread Function 
ToA  Top-of-Atmosphere 
TCO3  Total Columnar Ozone 
TCWV  Total Columnar Water Vapour 
WSA  White Sky Albedo 
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2 High-Resolution Albedo Generation System 

2.1 Overview 

The High-Resolution AlbedoMap (HR-Albedo) framework aims to provide 10-m albedo 
products for Sentinel-2 band-2 (492.4 nm), band-3 (559.8 nm), band-4 (664.6 nm), 
broadband VIS [400nm, 700nm], and 20-m albedo products for band-8A (864.7 nm), band-
11 (1613 nm), band 12 (2202 nm), broadband NIR [700nm, 4000nm] and broadband SW 
[300nm, 4000nm]. The albedo products consist of two parts, which are Directional 
Hemispherical Reflectance (DHR), also known as Black-Sky-Albedo (BSA), and Bi-
Hemispherical diffuse Reflectance (BHR), also known as White-Sky-Albedo (WSA).  

Figure 1 shows an overview of the processing chain for the HR-Albedo framework. 

 

 
Figure 1. Overall Processing chain of the HR-AlbedoMap system. 

Input data to the level-1C ToA-BRF is fed in parallel to the cloud masking system 
(DeepLabV3) and the Atmospheric Correction module (SIAC) [33] which itself uses the daily 
MODIS BRDF and the background aerosol field (CAMS) [34] to produce surface BRFs 
which over vegetated surfaces are called BoA. The separately calculated cloud mask and 
BoA are then employed so that the BRF retrieval is only performed over cloud-free areas 
and inverted using an Endmember extraction employing all spectral channels of interest to 
produce the HR-albedo product. Not shown here is what happens if there is cloud/cloud-
shadow obscuration which is described below. 

More details on the individual elements within this overall system are shown in Figure 2 and 
discussed further in successive sub-sections. 
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Figure 2. Further details of processing steps  
N.B. (EEA: Endmember Extraction Algorithm)  

This section provides an in-depth description of all the processing stages, which the cloud 
mask, endmember extraction and abundance estimation, high-resolution albedo inversion, 
gap filling. 

2.2 Practical Considerations 
 
The estimated computing time for different modules as well as the dataset sizes are listed 
in Table 1.  

Table 1. Estimated computation time for different modules on a VM machine, and 
size of input/output datasets. 

Modules Computing Time 
Computing cloud mask over scene GPU 
(including time of data resampling)  

24.2s 

Computing cloud mask over scene CPU 
(including time of data resampling) 

14min 

Atmospheric Correction (excluding time of 
downloading MCD43A) 

30min 

Sentinel-2
TOA BRF

AI Cloud
Detection

S2 Cloud
Mask

MODIS
BRDF

CAMS
Prediction

SIAC

S2 Surface
BRF

S2 Masked
Surface BRF

Spatial resampling

20-m S2
Surface BRF

EEA processing

S2 EEA
Abundance

500-m S2
Surface BRF

MODIS
Prior

Albedo/BRF
Calculation

Reprojection &
Aggregation

Albedo/BRF
Matrix (n-D)

Albedo
Inversion

20-m
Albedo

Downscaling

10-m
Albedo

enough cloud-
free pixels?

Yes

gap-filling
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High-Resolution Albedo Retrieval (without 
use of parallel computing) 

270 mins (4.5 hours) 

Datasets Size of datasets per tile 
S2 L1C (110 x 110km - Input) 920 Mbytes  
MCD43A1 (10º x 10º - Input) 180 Mbytes  

VNP43MA1 (10º x 10º - Input) 180 Mbytes  
High-Resolution S2 Albedo (Output) 450 Mbytes 

2.3 Output Products 
The output products include 1) 10-m albedo in Sentinel-2 band-2, band-3, band-4 and 
converted broadband VIS; 2) 20-m albedo in Sentinel-2 band-8A, band-11, band-12, and 
converted broadband NIR and SW. The output products are in GeoTIFF format, which 
includes the albedo values, cloud mask, and gap-filling flag. 

2.4 Cloud Masking 

2.4.1 Introduction of Cloud Masking 
Albedo retrieval relies on having a high confidence that the area being retrieved is not 
obstructed by clouds or their cast shadows. Even thin clouds can drastically alter the 
estimated albedo measurements. The ESA HR-AlbedoMap project relies on collecting 
albedo measurements over the same areas many times, and so a highly accurate, reliable, 
and fast cloud detection algorithm will help immensely in reducing the number of cloudy 
areas incorrectly used, and maximising the number of cloud-free areas retrieved. To this 
end, a component of the project was to develop a state-of-the-art cloud masking algorithm 
for Sentinel-2.  
Deep learning algorithms---specifically, convolutional neural networks---offer high 
performance across a huge range of computer vision tasks. Cloud masking falls under the 
category of image segmentation (the prediction of classes across the image at each pixel). 
In recent years, many model architectures have been proposed that are suited for image 
segmentation tasks. DeepLab v3+ is a well-known and highly performant example of such 
a convolutional neural network. We employ DeepLab v3+ here, trained on our own dataset 
of hand-labelled Sentinel-2 images, to detect both cloud and cloud shadow. 
Clouds often cast shadows on the surface, which affects albedo too. Therefore, it is 
important to include cloud shadows as a detected class. In this application, we do not 
particularly care if a pixel is cloudy or shadowed as both will affect albedo, and so in the 
final mask we combine these two classes to simply determine whether a pixel is valid for 
albedo retrieval or not. However, clouds and cloud shadows are considered separately by 
the model itself. We present performance for both the cloud vs. non-cloud model (which 
uses all available training data) and the clear vs. cloud/cloud-shadow (which uses a subset 
of the data for which shadow annotations could be made). 
This section of the ATBD proceeds with a look at prior work on cloud masking, and then an 
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overview of the algorithm’s development and design. Then, there is a section on the dataset 
used in training and validation of the algorithm. Next, details of how DeepLab v3+ was 
trained is given. Then, the pre-processing operations and implementation of a sliding 
window, so that the model can be used on extended areas, is covered. Finally, performance 
results on the test dataset, and some computational benchmarks, are shown, with 
comparison to other models where possible. 

2.4.2 Related Work 
A wide variety of modelling approaches have been put forward to detect clouds [1]. Many 
algorithms are based on reflectance or radiance thresholds, which are specified by experts 
and are usually fixed or based on a time-varying background (e.g. ISCCP, 
https://isccp.giss.nasa.gov/). For example, Landsat 7's ACCA [2]estimates the cloud cover 
over a scene by passing the band values through a chain of if_then/else gates which predict 
whether each pixel is a cloud. Similarly, [3] use a thresholding method on the high-resolution 
visible channel of Meteosat SEVIRI, and Sen2Cor, which serves to correct for atmospheric 
effects including clouds in Sentinel-2 Level 2 products  [4]. Fmask [5], [6] is an algorithm 
originally designed for Landsat imagery, which uses situational thresholding based on 
whether the cloud is thought to be above water or land, and can assign confidence values 
to its predictions, allowing users to balance their needs for sensitivity and specificity of 
detections. Unfortunately, in studies comparing the relative performance of different 
methods, thresholding based approaches tend to fall short of techniques which embrace 
some kind of optimisation through labelled training data [1], [7].  
Convolutional Neural Networks (CNNs) have come to dominate research in many Computer 
Vision tasks, perhaps triggered by the publication of AlexNet [8], [9]. For image 
segmentation, many architectures have been proposed. For example, U-Net  [10] was 
developed for biomedical image segmentation, but variations of it have also been used with 
success in cloud masking [11], [12], [13], [14]. More bespoke architectures have also been 
developed, e.g. [15], [16], [17], [18], [19]. 
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2.4.3 Algorithm Overview 

 DeepLab v3+ [20] is a convolutional model, building on versions v1 [21], v2 [22], and v3 
[23]. For comprehensive descriptions on the specific architecture of DeepLab v3+, the 
reader is recommended to refer to these papers. We base our implementation on the code 
of Jenia Golbstein (github commit here) as it defines the DeepLab v3+ architecture as a 
Keras model with compatibility with TensorFlow 2, which was the desired framework to use 
in the project, due to our own familiarity with it, and its extensive functionality. The full model 
definition file can be found in Appendix A, as it is not included in the final cloud masking 

package (https://github.com/aliFrancis/Sen2DLv3).  

 

Figure 3. Flowchart of cloud masking algorithm. Column of 
operations to the left was done during the algorithm's development, 

whilst those on the right occur during algorithm operation 
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DeepLabv3+ uses a large CNN (pre-trained on other tasks – in our case it was optimised 
during training on the PASCAL VOC dataset [24]) as a feature extractor, or “backbone”. 
Image segmentation performance often benefits from fusing information from different 
spatial scales, from the single pixel, to the whole image. This backbone is used to represent 
the spatial and spectral information in the image as high-level features, which it learns 
through training. In order for effective segmentation, features must represent a range of 
spatial scales. DeepLabv3+ achieves this through atrous convolutions. Atrous convolutions 
are like a standard convolution, but with a dilated kernel. The rate of dilation can then lead 
to features being extracted at different scales, by taking information from wider and wider 
fields of view. The resulting feature maps are combined using spatial pyramid pooling [25]. 
Whilst class predictions are required at every pixel, many neighbouring predictions are 
highly correlated with one another. Therefore, DeepLabv3+ outputs downsampled 
predictions, at a rate known as the output stride, and then upsamples the predictions to the 
full image resolution. The output stride is a power of two, and is often set to 8, 16, or 32.  

In our work, we use an output stride of 8, given that cloud masking often requires very small 
areas to be segmented, unlike in other image segmentation domains where the output mask 
is less spatially complex. This relatively low output stride increases the computational 
requirements in training. For this reason, we use a relatively computationally cheap CNN as 
our feature extractor; MobileNetv2 [26], which enabled us to use a higher batch size in 
training than would be possible with larger CNNs.  

Before input into DeepLab v3+, the data is pre-processed -- resampled to 20 m/pixel, 
normalised, and cut into windowed crops (Figure 3). After predictions by DeepLab v3+ are 
made, the individual masks are aggregated, leading to a final prediction with confidence 
values for each class at each pixel of the original Sentinel-2 L1C scene. 

 

2.4.4 Sentinel-2 Dataset 

The dataset used in training and testing is freely available here: 
doi:10.5281/zenodo.4172871. Full details of the annotation strategy, and dataset structure, 
can be found in the documentation there. Given that this dataset now exists, we do not 
believe it necessary to exhaustively describe its creation here, as it is available for anyone 
to use who wants to repeat or build on our work. However, here we reiterate the key points 
for context. 

The dataset includes data from 513 L1C Sentinel-2 images, selected randomly from the 
entire 2018 Sentinel-2 archive (with each scene having an equal chance of inclusion). A 
1022-by-1022 pixel area (at 20 m/pixel) was cropped from each product, with checks to 
make sure all pixels were valid (no no-data values were allowed).  

Annotations were made using IRIS (github commit here), developed by Alistair Francis and 
John Mrziglod whilst at ESA’s Phi-Lab. This tool allowed us to rapidly inspect and annotate 
multispectral imagery, by displaying multiple band combinations side by side, and using a 
Random Forest  [27] machine learning algorithm to extrapolate from one’s annotations on a 
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subscene to fill the rest of that image with predicted labels/predictions. These predictions 
could then be iteratively corrected using an electronic eraser and/or adding further pixels of 
the same cloud or cloud shadow class and remade, allowing for a good balance between 
human accuracy and machine speed.  

The annotations were made by both Alistair Francis and John Mrziglod, with roughly half 
the scenes done by each. At the beginning of the process, 10 scenes were identified as 
showing difficult or ambiguous features (e.g. thin Cirrus clouds). This was known as the 
“calibration set” and was marked by both annotators collaboratively, in order to approach a 
close agreement in annotation styles. At the end of annotation, we also selected 50 
subscenes as a “validation set” which we both annotated separately, and subsequently 
measured the agreement between them (94.98% of pixels marked the same). 

424 of the 513 scenes were marked with cloud shadow, if present, as well as cloud. 
However, the other 89 scenes displayed cloud shadow that was deemed too difficult to 
annotate, and so only includes cloud and clear classes. These difficulties stemmed from 
thin cloud shadows, which were very difficult to spot, and terrain shadow which got mixed 
with cloud shadow to make it impossible to distinguish between them. It was not possible to 
access the DEM employed for orthorectification to calculate which ones were terrain shadow 
(F. Gascon, private communication, 2021). 

Each subscene was also placed into some non-mutually exclusive categorisations, which 
described the surface type, cloud type, cloud height, and cloud structure. These can later 
be used to measure performance against certain situations (e.g. Cumulus clouds over 
forested terrain). A full list of categories and their definitions is found in the dataset’s 
documentation. 

The dataset is distributed in numpy array format. The subscenes are floating point 1022-by-
1022-by-13 dimension arrays, and the masks as boolean arrays of dimensions 1022-by-
1022-by-3. The scene-wise categories are kept as a table in a .csv file. 

2.4.5 Training of DeepLab v3+ 

DeepLab v3+ is trained using TensorFlow 2 and the Keras Model API 
(https://www.tensorflow.org/api_docs/python/tf/keras/Model).  The training data used 
comes from the Sentinel-2 cloud mask dataset mentioned in the previous section. In the 
case of the cloud vs. non-cloud model, 206 of the 513 scenes are selected randomly to be 
included in training, and another 51 for validation. Similarly, for the 3-class (clear, cloud, 
cloud-shadow) model, 424 scenes are available which have those classes marked. 170 are 
used in training, 42 in validation, and the rest are kept for testing. This test set is identical to 
the 2-class one, but with those scenes without shadow markings removed. 

During training, random images and masks are selected and read from disk. Then, data 
augmentation is applied in order to increase the variation of data, which increases model 
performance and attempts to prevent the model over-fitting. The augmentation routine 
consists of the steps described in Section 2.4.5. 
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Table 2: Data augmentation routine used during training. The effects are applied 
sequentially from the top down. 

Effect Probability of 
use 

Notes 

Cropping 100% A 257-by-257 crop is randomly selected from 
across the image and masked 

Rotation 100% Rotates image by random multiples of 90o 

Flipping 50% Reflects image along x-axis 
Salt and 
pepper noise 

50% chance Randomly changes 1% of image pixel values to 
either 0 (pepper) or 1 (salt) 

White noise 50% chance Changes all values in the image by small normally 
distributed amount (standard deviation 0.05) 

Band-wise 
multiplication 

50% chance Multiplies each image band by a different random 
value between 0.9-1.1 

 
Before beginning the training, pre-trained weights are loaded into all model layers (except 
the first convolutional layer, as it has a different shape to the pre-trained model’s, with 13 
channels, instead of 3). These weights are available for download at 
https://github.com/bonlime/keras-deeplab-v3-
plus/releases/download/1.1/deeplabv3_mobilenetv2_tf_dim_ordering_tf_kernels.h5  

In training, a batch size of 8 is used, meaning 8 images are read and augmented, and put 
together into an 8-by-257-by-257-by-13 array, with an 8-by-257-by-257-by-3 array for the 
mask (the last dimension is 2 in the case of a model trained only on cloud vs. non-cloud).  

After a batch is processed by the model, the output predictions are compared to the true 
mask using a loss function, which defines how wrong the model’s predictions were. We use 
categorical cross-entropy as our loss function, which is commonly used for machine 
learning. The categorical cross-entropy is defined: 

𝐶𝐶𝐸 = 	−∑ 𝒕𝒊log	(𝒚𝒊)"
#                                                   [1] 

Where ti is the binary truth vector for the ith class, and yi is the predicted confidence for that 
class, between 0->1. The gradients of this loss with respect to the model’s weights are then 
calculated with back-propagation [28], and updated accordingly. The learning rate is initially 
set at 1e-3, with a momentum of 0.9, meaning the weights update accordingly (in this 
equation, i denotes the training step, rather than the position of the weight in a matrix): 

𝑤#$% = 𝑤# −
&""'
&(!

∗ (1 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) ∗ 𝑙𝑟 + (𝑤# −𝑤#)%) ∗ 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚	            [2] 
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The first term in this equation is the weight before being updated, wi, the second term is 
based on the gradient of the loss, and the third indicates the direction of travel of the weight 
in the update prior to this one. By using this momentum term, weight updates are smoothed 
as different examples are used in training, resulting in more reliable convergence. 

Every 1,000 steps, the loss of the model on the validation set is calculated. After 100 epochs, 
the models had converged, at which point the learning rate was lowered by a factor of 10 
(to 1e-4), and training resumed for another 100 epochs. Then, once the validation loss had 
converged again, training was stopped. Therefore, in total, the model was trained for 
200,000 steps; with a batch size of 8, the model was trained on 1.6 million samples drawn 
from the training dataset. Training time was roughly 5-6 hours on an Nvidia RTX 2080 Super 
8GB graphics card. 

2.4.6 Resampling and Normalisation 

Before being inputted into DeepLab v3+, all bands are resampled to 20 m/pixel, using 
bilinear interpolation. This is because the architecture of DeepLab v3+ is such that data from 
the different channels must have the same spatial extent. 20 m was chosen as this is the 
resolution of the other components in the HR-AlbedoMap system, and was also the same 
resolution as the labelled dataset. Sentinel-2 bands which are already delivered at 20 
m/pixel (bands 5, 6, 7, 8a, 11 and 12) are unchanged, whilst those at 10 m/pixel (bands 2, 
3, 4 and 8) are downsampled by a factor of two, and those at 60 m/pixel (bands 1, 9 and 
10) are upsampled by a factor of 3. 

Reflectance values are normalised from the integer values stored in the L1C products, by 
dividing the values by 10,000 and storing them as floating point numbers. The resampled 
and normalised bands are stored in memory as numpy arrays. If used with a full Sentinel-2 
L1C product, this is an array of dimensions 5490-by-5490-by-13. 

2.4.7 Sliding window 

The SlidingWindow is a python class which feeds the model cropped sections of the image, 
and then stitches the outputs together into a final scene-wide cloud mask.  Figure 4 shows 
the geometry and labelled dimensions of the sliding window. We trained DeepLab v3+ with 
a window size of 257-by-257 pixels. Therefore, we keep Xwindow at 257 pixels across, 
nevertheless, the calculation of NX and Xoffset are generally applicable. NX is found with the 
following equation, where the floor operator rounds down to the nearest integer: 

𝑁* = 𝒇𝒍𝒐𝒐𝒓 ?*"#$%$)*&!%'(&
*")*!'$

@                                               [3] 

 
 
With NX we can now calculate the offset along the x dimension: 

𝑋+,,-./ = 𝒇𝒍𝒐𝒐𝒓 ?0+*")*!'$$*&!%'(&)*"#$%$
1

@                                  [4] 
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These calculations are identical for the y-dimension. With these values, the corners of all 
windows can be calculated for indices n between 0->NX, and m between 0->NY: 
 

		𝑋2.,/		
(5) 			= −𝑋+,,-./ + 𝑛𝑋-/7#8. 

																							𝑋7#9:/
(5) 			= −𝑋+,,-./ + 𝑛𝑋-/7#8. + 𝑋(#58+( 

			𝑌/+;				
(<) 				= −𝑌+,,-./ +𝑚𝑌-/7#8. 

																								𝑌=+//+<
(<) = −𝑌+,,-./ +𝑚𝑌-/7#8. + 𝑌(#58+( 

[5] 

These define the coordinates for the m*n windows which are extracted from the scene and 
passed to the model. The bounding boxes are made into a list m*n long, and by inference 
they are taken in batches to be given to the model. The batch size can be set by the user 
and should be set based on the available memory on either the CPU or GPU being used.  

For windows that are at the image’s boundary, containing some areas with no-data, these 
values must be filled with something. DeepLab v3+ is a convolutional model, so the values 
in these regions can affect the classification of those within the image, and sharp boundaries 
may cause issues for the model. Therefore, we pad the image with the mean values for 
each band from within the valid section of the image. This ensures that there is not a sharp 
discontinuity at the boundary, by roughly matching the spectral profile of the valid data within 
the window, minimising the edge’s effect on performance. For full Sentinel-2 L1C products 
at 20m/pixel, an Xstride of 238 leads to a very small value for Xoffset of 2, resulting in minimal 
edge effects. 
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2.4.8 Mask Aggregation 

The outputs of each cropped window overlap, when Xstride and Xwindow are not equal, and so 
a scheme for combination of the masks must be made.  We take the mean value at each 
given pixel. This means some areas with more overlaps receive more predictions, but the 
resulting confidence values after aggregation are still on the scale of 0-->1. For final class 
predictions, the class confidence values are thresholded at a value of 0.5. Then, for the clear 
vs. cloud+cloud-shadow model, the union between cloud and cloud-shadow pixels is taken. 

 
Figure 4. Sliding Window geometry for cloud mask. The model used defines Xwindow, 

whilst the user defined Xstride. Using these values, NX can be calculated, and then Xoffset. 
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2.4.9 Model Performance 

Once trained, the two variations of DeepLab v3+ (the cloud vs non-cloud model and the 
clear vs. cloud/cloud-shadow) are tested on the data not used during training, in order to 
ascertain their performance on unseen data. Four metrics are used, defined with respect to 
4 values: The True Positives (TP), True Negatives (TN), False Positives (FP) and False 
Negatives (FN). For both models, we take the “positive” class to be the cloud (and shadow, 
if included), whilst the clear pixels are treated as “negative”. The four metrics are defined 
below: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑂𝐴 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝐹% =	
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

[6] 

The model outputs a confidence value for each pixel, which we threshold at 0.5 for the 
purposes of the evaluation, so as not to bias results favourably by selecting an optimal 
threshold. Table 3 below shows the results of the two models on our test set, and some 
comparisons with other models, with our models in bold font. 

Table 3: Performance results for 4 models. The first three rows show models tested 
for cloud vs. non-cloud, whilst the final row is a clear vs. cloud/shadow model. 

Those in bold are the ones developed in this project. 

Model Scenes OA Recall Precision F1 

s2cloudless  
(Zupanc, 2017) 

256 92.4 89.5 95.9 92.6 

Standard L1C mask 256 83.1 80.3 86.9 83.5 
Cloud vs. non-cloud 256 94.0 94.2 94.2 94.4 

Clear vs. 
cloud+shadow 

212 96.1 95.6 97.3 96.4 

 
 

We also conducted some tests over test sites and visualised their results. Figure 5 and 
Figure 6 show two examples of the clear vs. cloud/shadow model, demonstrating its 
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capabilities on two very different areas, one in the USA containing high and low-level clouds  
and the other in Germany which show persistent clouds throughout the winter respectively. 

 
Figure 5. Clear vs. cloud/cloud-shadow for L1C product over Desert Rock, Arizona, 

from May 2020. Cloud/cloud-shadow boundaries are marked automatically and 
shown here in purple. Both thick and thin clouds are successfully detected, with 

few regions incorrectly flagged as non-clear. Most shadows are picked up 
successfully too. 
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Figure 6. Clear vs. cloud/cloud-shadow results over Hainich, Germany. Shadows are 

picked up successfully even against dark forested terrain. 

2.4.10 Error Budget Estimates 
The errors in the cloud+cloud-shadow mask can be thought of as comprising two 
populations. Errors of omission, or False Negative Rate (those cloudy or cloud shadow 
pixels which are incorrectly taken as clear) and errors of commission, or False Positive Rate 
(those clear pixels which are taken to be cloudy or shadowed). 
 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐹𝑁𝑅 = 	 >0
?@$>0

                                             [7] 

𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐹𝑃𝑅 = 	 >@
?0$>@

                                           [8] 

For our clear vs. cloud+cloud-shadow model’s results on our test set, we achieve an FNR 
of 3.35% and an FPR of 4.42%. This means that 3.35% of cloudy or shadowed pixels will 
be incorrectly used, and 4.42% of clear pixels that could have been used will be missed.  
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2.5 Atmospheric Correction 
This section introduces the SIAC atmospheric correction method [33], which is used to 
produce atmospherically corrected Sentinel-2 spectral surface reflectance. The basic idea 
of the SIAC method is to use a spectral BRDF dataset to describe the land surface 
anisotropy as a prior estimate of the Bottom-of-Atmosphere/Canopy (BoA) along with a 
coarse resolution dataset of atmospheric aerosol scattering and water vapour absorption in 
order to solve the inverse problem of retrieving the BoA.  
The main steps of the SIAC method can be summarised as following: 

a) Use the 500m daily MODIS BRDF product (known as MCD43A1) help to determine 
the spectral BRF given the Sentinel-2 acquisition geometry, in order to provide an 
expectation of the surface reflectance calculated at coarse resolution (500 m) and in the 
MODIS BRDF bands. 

b) Using a set of linear transformations to convert the predicted reflectance from the 
previous step to S2 spectral bands. This yields an expectation of surface reflectance for the 
target geometry and spectral bands at coarse resolution. 

c) Assuming that the surface reflectances are strongly correlated with the TOA 
reflectances, calculate an empirical Point Spread Function (PSF) model by maximising the 
correlation between the TOA reflectance convolved with a Gaussian PSF and surface 
reflectance coarse resolution expectation from step b). 

d) Map the surface reflectances to the TOA using a radiative transfer model and 
estimates of atmospheric composition. These can be compared with the measured target 
sensor TOA reflectances convolved with the empirical PSF. 

e) Exploiting the Copernicus Atmospheric Monitoring Service (CAMS) data as an a 
priori estimate, an inverse solution can be constructed to retrieve Aerosol Optical Thickness 
(AOT), Total Columnar Water Vapour (TCWV) and Total Columnar Ozone (TCO3). 
Furthermore, a spatial regularisation is used under the assumption of smooth variation of 
the atmospheric composition parameters. 

f) The previous steps result in a complete inference of the a posteriori joint Probability 
Density Function (PDF) of the atmospheric parameters, which can then be used to correct 
the original TOA reflectance data using in our case a Lambertian surface-atmosphere 
coupling assumption. 

g) Figure 7 shows the processing chain of the SIAC atmospheric correction method. 
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Figure 7. Flow Diagram of the SIAC processing chain. 

 

2.6 Endmember Extraction and Spectral Unmixing 
In this HR-Albedo framework, endmember extraction and spectral unmixing techniques are 
used as an unsupervised image classification method. This method employs endmember 
extraction to define pure pixel spectrum prior to a spectral unmixing stage. So-called spectral 
endmembers are often used as reference data in image classification. An endmember is 
defined as a land “type” that is assumed to have a unique spectral signature. Based on the 
extracted endmember, spectral unmixing provides the computation of the fractional 
contribution of individual endmembers within each pixel. The steps of employing the 
endmember extraction and spectral unmixing over a Sentinel-2 tile (110 km by 110 km) are 
shown in Figure 8, which includes the following major steps: 
 

Sentinel2 L1C

Surface BRF
6s
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Figure 8. Steps of employing endmember extraction and spectral unmixing. 

h) Spectral band selection. 

The selected input spectral bands include the following 6 bands: band-2 (492.4 nm), band-
3 (559.8 nm), band-4 (664.6 nm), band-8A (864.7 nm), band-11 (1613 nm) and band 12 
(2202 nm). These spectral bands are chosen as they are very close to the corresponding 
MODIS and VIIRS spectral bands. 

i) Spatial resampling. 

The S2 band-8A, 11 and 12 are 20-m resolution data, and band-2, 3 and 4 are 10-m 
resolution data. The generated cloud mask data is also at 20-m resolution. In this step, all 
spectral data are resampled to 20-m resolutions. Specifically, 4 pixels at 10-m resolution 
are averaged into a 20-m resolution pixel. 

j)  Spectral interpolation. 
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The endmember extraction method was originally proposed for hyperspectral data, where a 
large amount of spectral reflectance values is available. In this HR-Albedo study, it is found 
that the endmember extraction can be also applied to multispectral S2 data. However, the 
performance of extracting endmembers is improved with increased information (details not 
shown here) in the spectral domain. Therefore, in this step a spectral interpolation is used 
to increase the spectral sampling between 490 and 860 nm. 

k) Endmember extraction using N-FINDR and ATGP. 

N-FINDR algorithm [29], one of the most popular and effective endmember extraction 
algorithms, starts with the random initialization of the endmember set. In this framework, N-
FINDR is used to extract endmembers from 20-m interpolated S2 surface reflectance data. 
To improve the performance of endmember extraction, an Automatic Target Generation 
Process (ATGP) algorithm is used to initialize the endmember set in the endmember search 
process. Figure 9 shows an example of the extracted endmembers from S2 tile 32UNB that 
covers the FLUXNET tower site in Hainich. This example shows that 4 endmembers are 
identified and extracted from the spatially mixed pixels. The endmember type-D clearly 
represents vegetation, and the endmember type-B&C represent different types of soil. The 
endmember type-A with very high spectral reflectance values represent bright features (e.g. 
buildings or isolated clouds missed previously) in the data. 
 

 
Figure 9. Example of extracted endmembers from S2 tile 32UNB on 25th July 2019. 
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l) Spectral unmixing. 

The aim of employ spectral unmixing is to compute the fractional contribution of individual 
endmembers. In this module, a Fully Constrained Least Squares (FCLS) [30] linear 
unmixing method is used. Figure 10 shows an example of different abundance maps that 
are generated for individual endmembers. It can be observed that type-A endmember has 
very low abundance values as there are very few bright features (e.g. buildings) in this area. 
Type-B endmember represents the soil and has relatively high abundance ratios that are 
distributed across the whole area. Type-C endmember represents another type of soil and 
has lower abundance ratios than type-B soil. Type-D represents the vegetation and it has 
abundance ratios that can reach 0.7 in some regions. In this example, the displayed 
abundance maps are at 500-m Sinusoidal projection. This means the 20-m S2 data are first 
resampled to 500-m resolution, and then reprojected to MODIS Sinusoidal projection 
system as these abundance ratios at 500-m Sinusoidal projection will be used as input data 
in the next stage for HR-Albedo retrievals. 
 

 
(a) Abundance map for type A 

 
(b) Abundance map for type B 

 
(c) Abundance map for type C 

 
(d) Abundance map for type D 

Figure 10. Example of generated abundance map for individual endmembers. 
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2.7 High-Resolution Albedo (HR-Albedo) Retrieval 
The basic idea of retrieving high-resolution spectral and broadband albedo follows the 
method that was proposed in [31]. This method builds a forward albedo-to-reflectance model 
at 500-m MODIS Sinusoidal projection, and uses this model to invert the HR-albedo at S2 
20-m resolutions. The retrieval module consists of the following steps: 

a) Estimation of 500-m albedo at Sinusoidal projection. 

The MODIS 500-m Bi-directional Reflectance Distribution Function (BRDF) data are 
identified as the MCD43A1 products. The VIIRS 1-km BRDF data are identified as the 
VNP43MA1 products. The surface reflectances derived from this kernel-driven BRDF model 
are described as: 

𝑅(𝜆, 𝜃#5, 𝜃+A/ , 𝜙) = 𝑓#-+(𝜆) + 𝑓B+2(𝜆)𝑘B+2(𝜃#5, 𝜃+A/ , 𝜙) + 𝑓9.+(𝜆)𝑘9.+(𝜃#5, 𝜃+A/ , 𝜙)       [9] 

where λ is the band-centre of a given spectral channel; 𝜃#5, 𝜃+A/ and 𝜙 are the solar zenith, 
view zenith and relative azimuth angles, respectively. 𝑘 is the BRDF RossThick-LiSparse-
Reciprocal (RTLSR) kernel and 𝑓  is the spectrally-dependent kernel weighting, with 
subscripts iso, vol and geo representing the isotropic, volumetric and geometric-optical 
components, respectively. Integration of the BRFs over all view angles results in a DHR, 
and a further integration over all illumination angles results in a BHR: 

𝐷𝐻𝑅C(𝜃#5) =
%
D ∫ 𝑑𝜑1D

E ∫ 𝑅C(𝜆, 𝜃#5, 𝜃+A/ , 𝜑)𝑢B𝑑𝑢B
%
E                                    [10] 

𝐵𝐻𝑅C = %
D ∫ 𝑑𝜑 ∫ 𝐷𝐻𝑅C(𝜃#5)𝑢-𝑑𝑢-

%
E

1D
E                                             [11] 

where 𝑢B(=sin 𝜃+A/) and 𝑢-(=sin 𝜃#5) are the variables of integration. Alternatively, the DHR 
and BHR can be estimated using a simple polynomial with good accuracy for any solar 
zenith angle. The polynomial is as follows: 
 

𝐷𝐻𝑅C(𝜃#5) = 𝑓#-+(𝜆)_𝑔E#-+ + 𝑔%#-+𝜃#5
1 + 𝑔1#-+𝜃#5

Fa +
𝑓B+2(𝜆)_𝑔EB+2 + 𝑔%B+2𝜃#5

1 + 𝑔1B+2𝜃#5
Fa +

𝑓9.+(𝜆) ?𝑔E9.+ + 𝑔%9.+𝜃#5
1 + 𝑔19.+𝜃#5

F@
                               [12] 

𝐵𝐻𝑅C = 𝑓#-+(𝜆)𝑔#-+ + 𝑓B+2(𝜆)𝑔B+2 + 𝑓9.+(𝜆)𝑔9.+                                   [13] 

The polynomial coefficients [32] for estimating DHRs and BHRs are included in Table 4. 
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Table 4. Polynomial coefficients for estimating DHRs and BHRs. 

Term Isotropic (iso) RossThick (vol) LiSparseR (geo) 

𝑔E 1.0 -0.007574 -1.284909 

𝑔% 0.0 -0.070987 -0.166314 

𝑔1 0.0 0.307588 0.041840 

white-sky integral  1.0 0.189184 -1.377622 
 
Following the polynomial in Eq. (12) & (13), the 500-m Sinusoidal projection DHR and BHR 
are calculated using MODIS BRDF, and solar/viewing geometry at S2 overpass time. Figure 
11 shows an example of resampled S2 Solar Zenith Angle (SZA) and Solar Azimuth Angle 
(SAA) data at 500-m Sinusoidal projection. 

 
(a) aggregated S2 SZA 

 
(a) aggregated S2 SAA 

Figure 11. Example of S2 Solar Zenith Angle (SZA) (a) and Solar Azimuth Angle 
(SAA) (b) that are resampled and aggregated to 500-m Sinusoidal projection. 

 
Based on the known solar angles and polynomial coefficients shown in Table 4, Figure 12 
shows examples of calculated surface DHRs for the following MODIS bands: 470nm, 
555nm, 645nm, 1640nm, 2130nm, VIS, NIR and SW bands. 
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(a) 470nm DHR 

 
(b) 555nm DHR 

 
(c) 645nm DHR 

 
(d) 1640nm DHR 

 
(e) 2130nm DHR 

 
(f) VIS-band DHR 
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(g) NIR-band DHR 

 
(h) SW-band DHR 

Figure 12. Example of surface DHRs that are estimated from the MODIS BRDF 
polynomials at 500m. 

b)  Forward modelling of albedo-to-reflectance regressions for individual endmembers. 

This step builds the forward model that describes the albedo-to-reflectance ratios for 
different endmembers. The ratios will be further applied to S2 spectral reflectances to 
retrieve high-resolution albedo values. A linear regression is used to predict the relations 
between albedo and reflectances for 8 bands (5 spectral bands and 3 broadbands) and 2 
types of albedos (DHR and BHR), as shown in Figure 13. 
 

 
(a) 645nm Type-A 

 
(b) 645nm Type-B 
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(c) 645nm Type-C 

 
(d) 645nm Type-D 

Figure 13. Example of regressions between DHRs and BRFs at 645nm band for 
different endmembers. 

c) Apply the regression model to high-resolution S2 data. 

In the step, the obtained regression models are applied to high-resolution S2 data to inverse 
the high-resolution albedo values. First, Table 5 lists the MODIS spectral bands that the 
forward regression models are based on, and the corresponding S2 bands that the retrieval 
applied to. 

Table 5. List of MODIS bands and corresponding S2 bands. 

MCD43A1 Bands VIIRS Bands Sentinel-2 Bands 

Band-3 (470nm) Band-M3 (483nm) Band-2 (490nm) 
Band-4 (555 nm) Band-M4 (555nm) Band-3 (560 nm) 
Band-1 (645 nm) Band-M5 (672nm) Band-4 (665 nm) 
Band-2 (859 nm) Band-M7 (866nm) Band-8A (865nm) 

Band-6 (1640 nm) Band-M10 (1610nm) Band-11(1610 nm) 
Band-7 (2130 nm) Band-M11 (2255nm) Band-12 (2190 nm) 

Band VIS Band VIS Broadband VIS Eq. (15) 
Band NIR Band NIR Broadband NIR Eq. (16) 
Band SW Band SW Broadband SW Eq. (14) 

 
Eq. (14)-(16) list the S2 narrow to broadband conversions, which are using coefficients 
proposed in [35]. 
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𝑏GH = −0.0049 + 0.2688𝑏1 + 0.0362𝑏F + 0.1501𝑏I	
+0.3045𝑏JK𝐴 + 0.1644𝑏%% + 0.0356𝑏%1                              [14] 

𝑏LMG = −0.0048 + 0.5673𝑏1 + 0.1407𝑏F + 0.2359𝑏I                            [15] 
𝑏0MN = −0.0073 + 0.5595𝑏JK𝐴 + 0.3844𝑏%% + 0.0290𝑏%1                     [16] 

 
To generate high-resolution albedo at S2 resolutions, Eq. (17) is used to combine the 
regressions from the contributions of 4 different endmembers: 

𝑎𝑙𝑏𝑒𝑑𝑜(𝜆) = ∑ 𝑤#(𝑐# + 𝑘# × 𝐵𝑅𝐹(𝜆))0
#O%                                  [17] 

where N is the number of endmembers, 𝑤# is the abundance from endmember type i. 𝑐# and 
𝑘# are the regression coefficients.  
A full S2 tile has an extent of 110km * 110km. In this framework, the high-resolution albedo 
is retrieved in a patch of 1000 * 1000 pixels, with 50 pixels overlap between adjacent 
patches. The retrieval of individual patches is independent from each other, and can be 
processed in parallel or on multi-threaded CPU cores in a suitable supercomputing 
environment. Figure 14 shows an example of retrieved 10/20m albedo products. 

 
(a) 10m DHR at S2 band-4 (665 nm) 
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(a) 20m DHR at broadband SW  

Figure 14. Example of 10m/20 albedo products. Grey pixels are cloud covered. 

2.8 Verification 
The processed high-resolution albedo products have all been validated using tower-based 
albedometer or sun photometer measurements. The spectral albedo products have been 
validated using CNES RadCalNet [36] BHR spectral measurements, whilst the broadband 
shortwave albedo products are validated using GbOV (https://gbov.acri.fr/dataaccessLP/) 
measurements. 
Figure 15 shows a flowchart for the validation of the S2 high-resolution albedo products. 
The high-resolution albedo pixels within the tower field-of-view are averaged to get a mean 
S2 high-resolution albedo value. The tower sun photometer measurements are processed 
by CNES through the ROSAS software to retrieve spectral albedo at the 2 RadCalNet sites, 
or the albedometer is processed by the GbOV LP2 processor to get broadband shortwave 
albedo at the GbOV sites. 
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Figure 15. Flowchart of validating S2 high-resolution albedo products. 

 
The verification of processed spectral high-resolution albedo products are performed using 
spectral RADCALNET in situ measurements kindly provided by Aimé Meygret and Morgan 
Farges from CNES Toulouse [37]. The two RADCALNET verification sites are Gobabeb (-
23.6°S, 15.12°E) and LaCrau (43.56°N, 4.86°E). The geolocations and field-of-view of 
ground-truth measurement are shown in Figure 16. 
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(a) 31TFJ Sentinel-2 Surface Reflectance 

RGB 

 
(b) 33KWP Sentinel-2 Surface Reflectance 

RGB 
Figure 16. Geolocations and field-of-view of the towers from the RADCALNET sites 

(a) Gobabeb and (b) LaCrau. The red circle has a radius of 30 m.  
 
CNES provided the BHR values that they calculated using the same way that the CNES 
RADCALNET surface reflectance values are derived [37]. In this validation stage, the 
Sentinel-2 band-2, band-3, band-4, band-8A and band-11 BHRs are compared between the 
RADCALNET measurements and HR-AlbedoMap products. No Band-12 is recorded by the 
CIMEL-318T used to obtain the sun photometer measurements of the sky and the ground. 
 
 

 
(a) 

 
(f) 
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(b) 

 
(g) 

 
(c) 

 
(h) 

 
(d) 

 
(i) 

 
(e) 

 
(j) 

Figure 17. Intercomparison between RADCALNET BHRs (black dots) and HR-
AlbedoMap retrieved BHRs (red dots) at band-2, band-3, band-4, band-8A band-11.  



 

 

 
Title: HR-AlbedoMap Algorithm 
Theoretical Basis Document 
Doc. No.  HR-AlbedoMap_ATBD-v1.1 

 

 

 

Page 34 of 44 

  
The corresponding 2D scatter plots for spectral BHRs between RADCALNET 
measurements and HR-AlebdoMap values are shown in Figure 18 for Gobabeb and Figure 
19 for LaCrau. For both sites, band-2,3 and 4 display a good correlation between 
RADCALNET and HR-AlbedoMap retrievals. For bands 8A and 11, the HR-AlbedoMap 
BHRs at LaCrau site appear to be underestimated compared with RADCALNET 
measurements. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 

Figure 18. 2D scatter plots for BHR comparison between RADCALNET 
measurements and HR-AlbedoMap retrievals at Gobabeb. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

Figure 19. 2D scatter plots for BHR comparison between RADCALNET 
measurements and HR-AlbedoMap retrievals at LaCrau. 

The processed high-resolution broadband shortwave albedo products have also been 
validated at two GbOV tower sites: Hainich (Germany) and Desert Rock (US). The GbOV 
sites provides broadband shortwave DHRs and BHRs that are derived from albedometers 
at over 20+ tower sites worldwide. The GbOV data are available from: 
https://gbov.acri.fr/dataaccessLP/. The methods of deriving GbOV tower-based DHRs and 
BHRs are described in [38]. In summary for the GbOV method, radiance data with a direct-
to-diffuse ratio smaller than a threshold (𝛽<PQ) are used to estimate the DHR, while data 
with this “diffuse ratio” larger than a threshold (𝛽<#5) are used to estimate the BHR. 
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(a) 32UNB Sentinel-2 Surface Reflectance 

RGB 

 
(b) 11SNA Sentinel-2 Surface Reflectance 

RGB 
Figure 20. Geolocations and field-of-view of GbOV sites DE-HAI (a) and US-DRA (b). 

The red circle in the zoom window represents the tower field-of-view. 
Figure 21 shows the broadband shortwave albedo intercomparison between GbOV ground 
measurements and HR-AlbedoMap retrievals. 
 

 
(a) 

 
(b) 

Figure 21. Intercomparison between GbOV broadband shortwave BHRs (black dots) 
and HR-AlbedoMap retrieved BHRs (red dots) at (a) Hainich (b) Desert Rock. 

 
The corresponding 2D scatter plots for spectral BHRs between GbOV and HR-AlbedoMap 
retrievals are shown in Figure 22. 
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(a) Hainich	

 
(b) Desert Rock	

Figure 22. 2D scatter plots for broadband shortwave BHR comparison between 
GbOV measurements and HR-AlbedoMap retrievals at (a) Hainich and (b) Desert 

Rock. 

2.9 Gap filling using a land surface BRDF climatology, the so-called “prior” 
In order to generate a continuous spectral or broadband high resolution spectral and 
broadband albedo product, a background climatology needs to be employed for cloud-
covered pixels. For cloud-covered pixels in high-resolution albedo maps, cloud-free high-
resolution albedo values and MODIS (or VIIRS) BRDF prior from adjacent days are used 
for the interpolation. This window is set by number of cloud-free acquisitions per pixel and 
initially will be set to ±15 days. This section describes the method of generating the BRDF 
prior. 
The MODIS Collection V6.1 (or VIIRS VNP43MA1) BRDF-Albedo model parameters 
product is used to develop the prior parameter estimates. Specifically, MDC43A1 (BRDF-
Albedo Model Parameters 16-Day L3 Global 500m) and MCD43A2 (BRDF-Albedo Quality 
16-Day L3 Global 500m) are used. Any optimal merging of data requires estimates of the 
uncertainties associated with the various data sources. Often this information is not directly 
available. The particular dataset of interest here is the MODIS (or VIIRS) BDRF/Albedo 
product (MCD43 or VNP43). BRDF or Albedo can be described for some waveband via 
spatial datasets of three model parameters 𝑓#-+, 𝑓B+2, and 𝑓9.+, available from the MCD43A1 
or VNP43iA1 or VNP43MA1 product at 500m spatial resolution (MOD43A1 & VNP43i) or at 
1000m for VNP43mA1 on daily time-steps from early 2000 to the present (i.e. around 21 
years of data) for MODIS and from 2012 to present (i.e. around 9 years) for SNPP-VIIRS. 
The uncertainty in albedo is a function of the angular sampling achieved by the MODIS 
instruments and uncertainties in the input BRF data (due to errors in the correction of 
atmospheric effects, footprint/gridding issues etc.). If insufficient samples (≤7 are deemed 
available over the (16  day) period of observation, the linear BRDF model cannot be inverted 
without further constraint and a ‘backup algorithm’ is brought to bear on the problem. In this 
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case, a constrained model is used in the inversion (the so-called magnitude inversion). For 
these various reasons there is no routine assessment of the uncertainty associated with the 
BRDF model parameters. Instead, to give the user a guide to the reliability of the data, the 
product MCD43A2 provides Quality Assurance(QA) information associated with each pixel 
and time period of inversion. For each of the first seven MODIS wavebands and the I and 
M bands of the VIIRS product, QA is categorised into five levels as shown in Table 6: 
 

Table 6. MODIS QA flags for the MCD43 product as well as VIIRS QA flag listed in 
https://lpdaac.usgs.gov/products/vnp43ia2v001/ for the VNP43 product  

Code Meaning 
0 Best quality, full inversion 
1 Good quality, full inversion 
2 Magnitude inversion (Num Obs >=7) 
3 Magnitude inversion (Num Obs>=3 & <7) 
4 Fill value 

We assume that the mean and uncertainty for a given pixel for category QA code 0 can be 
estimated from samples over the N years of observations 20+ years for MODIS and 8+ 
years of VIIRS, with a minimum of four samples and denote the mean 𝑓R̅KE,T(𝑖, 𝑗)  and 
variance 𝜎RKE1 (𝑓T , 𝑖, 𝑗) for some location (𝑖, 𝑗) for parameter 𝑓T. Of course this includes not 
only the uncertainty in the parameter but also any real variation in the parameter over the 
time period. It is therefore liable to be an over-estimate of uncertainty. 
We then estimate 𝑓T for other QA codes from its mean value for pixel (𝑖, 𝑗) over the N-year 
time period, where a minimum of three samples exist and calls this 𝑓R̅KU,T(𝑖, 𝑗) for QA codes 
𝑐 = {1,2,3}. The assumption here is that 𝑓R̅KE,T(𝑖, 𝑗) represents 𝑓T at (𝑖, 𝑗) and characterise 
the departure for 𝑓R̅KU,T(𝑖, 𝑗) relative to 𝜎RKE1 (𝑓T , 𝑖, 𝑗): 

𝜎RKE1 (𝑓T , 𝑖, 𝑗) =
%
0
∑ w,

̅,-#,/(#,W)),̅,-0,/(#,W)

X,-0
1 (,/,#,W)

x
1
                                   [18] 

where 𝑁 is the number of samples over (𝑖, 𝑗) (with 4 or more samples of QA 0 and 3 or more 
samples of QA 𝑐). We define a set of weighting terms 𝑊%E, 𝑊1E and 𝑊FE for each category 
of QA relative to QA0 where: 

𝑊UE =
%

X,-#0,/
1                                                        [19] 

These weights can be used when calculating estimates of the mean value for each 
parameter for each pixel 𝑓T̅(𝑖, 𝑗) using data from all QA catagories: 

𝑓T̅(𝑖, 𝑗) =
%

0(!,3)
∑ ∑ 𝑊UE𝑓R̅KU,T(𝑖, 𝑗)YRKU
UOF
UOE                                 [20] 

Defining 𝑊EE = 1. The summation over 𝑦𝑄𝐴𝑐 is over all samples for pixel (𝑖, 𝑗) that fall into 
the category 𝑄𝐴𝑐. The normalization term 𝑁(#,W) is: 
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𝑁(#,W) = ∑ ∑ 𝑊UEYRKU
UOF
UOE                                              [21] 

Figure 23 shows an example of comparison between daily and prior BRDF for MODIS tile 
h19v02 in year 2019 and day-of-year 33. 

 
(a) Band-1 645nm 

 
(b) Band-2 859nm 

 
(C) Band-3 470nm 

 
(d) Band-4 555nm 

 
(e) Band-5 1240nm 

 
(f) Band-1 1640nm 

Figure 23. 2D scatterplots showing correlation between daily and prior BRDF for 
MODIS tile h19v02 in year 2019 and day-of-year 33. 
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2.9.1 Albedo calculation as a function of sun angle 

The following polynomial has been found [39] to reproduce the Black-sky albedo, abS , well as a 
function of solar zenith angle, f  

abS(f,l)= fiso(l)(goiso 
+g1iso

f2 +g2iso
f3)+ fvol(l)(govol 

+g1vol
f2 +g2vol

f3)+ fgeo(l)(gogeo 
+g1geo

f2 +g2geo
f3)    [22]                                         

where the gjk 
 coefficients are listed in Table 7 below and the fk(∅) are the BRDF model kernel 

weights or parameters. The integrated coefficients for the white-sky albedo are also provided. 

g jk  for kernel, k k=isotropic k=RossThick k=Li-Sparse 

 gok (term 1) 1.0 -0.007574 -1.284909 

g ok  (term ) 0.0 -0.070987 -0.166314 

 g ok  (term ) 0.0 0.307588 0.041840 

White-sky 1.0 0.189184 -1.377622 

Table 7: Coefficients for equation 22 to calculate albedo as a function of solar zenith angle 
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